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Metastable states of the Potts glass 

V B Cherepanov, S L M Cyr and B W Southern 
Department of Physics, Univenity of Manitoba, Canada 
and 
Winnipsg Institute for "retical Physics, Winnipsg, Manitoba, Canada R3T ZN2 

Reaivcd 23 Deeembsr 1991 

Aba(neL In this paper we examine the distrtution of metastable state8 in the p-state 
Potu model. The random-bond Potta model on a chain sa well sa the uniform bond 
model on a self-similar lattice are studied. Analytic ~ s u l b  are obtained for arbitraxy 
continuous distributions of nearest-neighbour bonds for the chain. When negative bonds 
arc present, the ground state for p > 2 ia frustrated, in mnhsat to the Ising model which 
has p = 2. l l ~ e  results for p > 2 show some similarity to the discrete random-field 
ising modei. 

1. Introduction 

During the past 20 years, spin glasses have been the subject of many theoretical 

infiite-range models where mean-field theories predict a phase transition indepen- 
dent of the dimension of the lattice. For short-ranged models, the situation is less 
clear but there seem to be general agreement that the Ising spin glass exhibits a 
phase transition [4,5] at finite temperature in d = 3 but not d = 2. This has resulted 
in other models such as the Potts glass and quadrupolar glasses [l-3,6,7] receiving 
more attention. The dynamics of these random systems is extremely complicated due 
to the presence of a large number of local energy minima into which the system can 
be trapped for extremely long times. The distriiution of these states as a function 
of their energy has been studied at zero temperature (8-131 for the Ising model in 
both d = 1 and d = 2. In the present paper we study the p-state Pot& model on a 
onedimensional chain. In particular we study the distribution of metastable states at 
zero temperature for arbitrary distributions of the bonds between nearest neighbours. 
Exact results are obtained for all p. Demda and Gardner 1121 have previously studied 
the king model ( p  = 2 )  for the case of symmetric bond distributions. Their approach 
is based upon the fact that for continuous distributions the chain has three types of 
bonds: strong, medium and weak. A weak bond is a bond whose magnitude is smaller 
than the magnitude of the bonds on either side of it and the number of metastable 
states is given by 2'" where w is the number of weak bonds. However, in the Potts 
model with p > 2 the sign of the weak bond is important since the spin-inversion 
symmetry of the king model is lost. We extend Derrida and Gardner's results for the 
distribution of metastable states to arbitrary p and to arbitrary distributions. We also 
study a uniform-bond model on a self-similar lattice where the fractal geometry is 
responsible for the disorder. We use a recursive method to calculate numerically the 
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distribution of metastable states in energy. In both cases the dstriiution of metastable 
states is similar to that in the random-field king model [14, U]. This latter model 
is like the p-state Potts model in that the spin-inversion symmetry of the zero-field 
Ising model is destroyed. In section 2 we describe the model and define a metastable 
state. The equations for the moments of the distribution of such states are written 
down and solved analytically. In section 3 we consider the uniform-bond model on 
a fractal lattice. A recursive algorithm which can be used to obtain the distribution 
of metastable states numerically is d m i e d  and the results are discussed. Section 4 
summarizes our findings. 

V B Cherepanov et a1 

2. Metastable states in the Potts glass 

The p-state Potts model on a chain of L sites with free ends is defied by the 
Hamiltonian 

L 

H = -E Ji(P6 ,,,,,-, - 1) (1) 
i= l  

where the end bonds J ,  = JLtl = 0. Each ui can take the values ui = 1,. . . , p 
and each Ji is a nearest-neighbour bond which is an independent random variabie 
given by a probability distribution P( .Ti). The total energy can be written as 

where 

E i = - - [  Ji ( ~ 6 o , , u ~ - t  - 1) + Ji+l(P6,,,,,+, - 111 . (3) 

If we consider site i and consider 'spin tlips' at zero temperature in which ui 
changes while all other us remain fixed, then there will be a state (or states) for 
which E; is minimum for all i. A state is called metastable if such a single 'spin flip' 
at any site cannot decrease the energy. Such a state may not be stable, however, if 
two adjacent spins are !lipped. 

The generating function for the distribution of such single spin-flip states is 

where 
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where 

yL(QL,,yL-l) = c n e-XE4-+l!oi,o,-l )@ (-A Ei( ui+i 3 bi 3 ~ i -  1)) (7) 
L-2  

{e;] i=l  
l ( j < L - 2  

& a p x p m&ix whi& C&G b. pyprpsed !he fer= 

YL(o~o' )  = A,56,,,, + BL(1 - 6,,,,) (8) 

since all p-states are equivalent. For a chain with WO sites (L = 2), we have the 
boundary condition that A, = B, = 1, independent of J,. Hence A, and E L  can 
be determined from the following recursive equation: 

YLtl(OL+L>OL) 

= e-XE~(e~+i,~~lo~-r)@ (-AEL(bL+i 9 O L ~  nL-1) )  YL(uL7 0 L - i )  

!9! 
0' -1 

where YLtl corresponds to the chain with the (L + 1)th site added. 

equally. Using (7)-(9) we have 
We first consider the case with X = 0 in which all metastable states are weighted 

j i 0  j 

where 

is a 2 x 2 transfer matrix which only depends on the last two bonds. This form of 
fi( JLtl, J L )  is only correct for p > 2 since configurations with u,+~, U, ,  u , - ~  all 
different have been included. 

For a chain with i = 3, A, and E,  are functions of boih i2 and J,. Averaging 
these functions over the distribution P ( J , )  yields averaged variables (A,(J,))  and 
( B 3 ( J 3 ) ) .  Hence averages for a chain of length L + 1 can be written in terms of the 
same quantities for a chain with one less bond as follows: 

Assuming in the limit L 00 that these variables have the form 
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where p is the largest eigenvalue of the integral operator (12). we obtain a system of 
integral equations of the Volterra type for p. These. equations are 

V B Cherepanov et al 

0 - J  
t (p-2)@(-5)/  B(J')P(J')dJ'+ E(J')P(J')dJ'} 

-cc 

where P(  J) is the bond distribution and the subscript on J has been dropped. 

follows: 
It is convenient to separate functions of J into positive and negative parts as 

A ( J )  = At(J)@(J) t A-(-J)O(-J) 
B ( J )  = Bt(J)O(J) t B - ( - J ) O ( - J )  
P ( J )  = Pt(J)O(J) t P - ( - J ) O ( - J ) .  

For the case of a symmetric bond distribution P ( J )  = P(-J) we can introduce a 
new variable 

[=IJP(J')dJ'  0 

and (14) become independent of the detailed form of P ( J ) :  

A similar set of Linear integral equations can be obtained for an arbitrary (non- 
symmetric) rectangular distribution. 

The general solution of this set of equations has the form 

A t -  - a e i 4  B + -  - hia< A- = ceiaC B- =dei*'(. (18) 

(19) 

The parameter a p  is a solution of the quartic equation 

(apL)4 - ( p  t l ) ( a P ) z  + 1 = 0 
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and the four roots are labelled as a p  = f y , f z  where 

Y = { ; [ ( P + l ) + \ / ( P - l ) ( P + 3 ) 1 } ' ~ z  

z =  { ;KP+l ) - \ / (P -  l ) (P+3)1}1 /z .  
(20) 

In order to have a non-trivial solution of (17), the determinant of the coefficien!s 
of (U, b, c,  d) must vanish. This condition is 

tan(r/2p)  d P -  l ) ( P +  3)  + (2 - Y2) [2+ ( p - 2 ) ]  

The solution of this equation for p gives the first moment (NmJ of the distribution of 
metastable states. Derrida and Gardner [12] obtained the result p = 4/?r for p = 2. 
For p > 2, the first moment increases with p and in the limit p -.+ 03 approaches the 
value p = p / 2 .  

In addition to the f i t  moment of the distribution of metastable states, we can 
repeat the calculation described above for arbitrary moments and X non-zero. A 
recursive eauation for the nth pwers of  A;,; and BE+; involve the aors products 
ATtlB;;;" with m = 1,. . . , n - 1. However these cross products can be written in 
the form 

(22) 
The variables CEtl and D;,, do not depend on m and a set of equations of the 
following form are obtained: 

A'&lB;;;" = e x p  (4XmpJLtl) [CZtl + (P- l)'"DZt1] . 

4 4 3~$rk )v2n( 7- 7- \ nnhr invnhmr tho hnnrlr 7. nnrl 7. inrl hnnrn YL+l,Y' ,  U.L., ..., Us.- ".l VU.."" "'+I Y&" Y' "._ .1".1"" 
averages of these moments for a chain of length L + 1 can be expressed in terms 
of the same quantities for a chain of length L. Introducing averaged variables 
and separating them into terms for positive and negative bonds, we obtain a set of 
eight coupled integral equations. There are four simple relations between the eight 
functions and the set again reduces to four integral equations of the Volterra type. 

We first consider the case of X = 0 and a symmetric bond distribution P (  J )  = 
P(-J). The general solution of these equations is similar to that in (18) and a p  
satisfies the quartic equation 

(ap)4- [3p" - 2 ( p - 1 ) " - l ] ( a p ) 2 + [ 2 p "  - ( p - l ) " - l ] [ p " - ( p -  I)"] 

- ( p  - 1)"(2" - l ) 2  = 0 .  (24) 
m~ .- 
in= equation reduces to ji4j for the f i s t  iiioiiieni when n = i. 
equations have a non-trivial solution when the following condition is satisfied 

'i'iie integrai 

iHrZ - r,) - g t a n ( r / 2 ~ ) [ 1 -  r l ) ( l+ (P - ~ ) " Y z I  
+ 4 tan(g /zp) [ l -  r2)(l + ( P  - l )"r l l  = 0 (25) 
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with 
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g2 + (p - 1)" - 2p" t 1 
( p  - 1)"(2" - 1) 

= 

z2 + ( p  - 1)" - 2 p n  + 1 
( p -  1)"(2" - 1) y* = 

where g and z are the absolute values of the roots of the quartic equation in (24) 
and reduce to y and z when a = 1. If the mots corresponding to Q or z are complex 
then in (25) the corresponding tan function is replaced by tanh. In the limit of 
large p and fixed n, we have p = pn/2 whereas in the limit of large a and fixed p, 

The average of the logarithm of the number of metastable states can be obtained 
by examining the limit n --t 0 of the nth moment. We give below analytic results 
for A = limn,,, ap/an in the case where the distribution is weighted according to 
energy using X as in (4) and for an arbitrary distribution of bonds. The average of 
the logarithm of the number of metastable states is related to A by 

p = ( p -  l)"/2. 

a A  
(In Nzs)  = A + XE E = -- 

BA 

where E is the average energy of the states. With P + ( J )  and P-(J) defined as in 
(15) we also define 

m 
( J ) ,  = J J'P,(J')dJ' 

0 

The solution of the equation which is the generalization of (25) in the limit n + 0 
gives 

A = @-(O)ln(p- 1) + [(P- 1)(JIt + (4-1 

where 

fl(J') = In 1 t - [ 
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Each of the terms inside the integrand in (29) corresponds to a weak bond configu- 
ration but configurations with two adjacent negative bonds do not contribute. This is 
in contrast to the king model ( p  = 2) where the sign of the weak bonds is irrelevant. 
In the case p = 2 all three functions f i ( i  = 1,2,3) are the same and the additional 
weak bond configurations must also be included. Hence for the king model we have 

A = X [ ( J ) + + ( J ) - ]  + J m d J ‘ ( l n  0 [ l + e - a A J ‘ ] } { @ t ( J ‘ ) P - ( J ’ ) @ + ( J ‘ )  

+@-(J’)P+(J’)@-(Jf)+2@+(J’)P+(J’)@-(J’) 

+ @+(J’)pt(J‘)@+(J’)  + Z @ _ ( J ’ ) P - ( J ’ ) @ , ( J ‘ )  

+ @-(J’ )p - (J ’ )@- (J ‘ ) I .  (31) 

Thus (29) and (31) can be used to study non-symmetric distributions of the bonds. 
As X + 00, only the lowest energy states are included and we have 

and thus the ground state is highly degenerate for p > 2 if negative bonds are 
present. The maximum energy E,, and the most probable energ EKP are also 
easily obtained by taking the limits X -+ --oo and X -* 0 respectively. The results for 
arbitrary non-symmetric distributions are easily obtained from (27)-(31). For example, 
ifallbondsarenegativethenthedistributioncoUapsesto(InN,,) = l n ( p - l ) ,  E = 
- ( J ) - .  If all bonds are positive, then the result is essentially the same as for the 
case p = 2. Figure 1 shows (In NmJ as a function of E for a Gaussian distribution 
of bonds with non-zero mean Jo = fO.S and unit variance in the case p = 3. The 
distribution has discontinuities at Emin and E,,,, in both cases. These discontinuities 
are due to the presence of adjacent negative bonds in the chain. As the number of 
positive bonds increases (Jo  = +OS) these discontinuities decrease with the one at 
Emin decreasing more rapidly. When all bonds are positive both discontinuities are 
zero and the curve is symmetric about Emp where it has the value 4 In p . However as 
the number of negative bonds increases ( J o  = -0.5) the discontinuities increase and 
the distribution shrinks in width until finally when all bonds are negative it collapses 
to the value In(p  - 1). 

The expressions simplify in the case of a symmetric distribution and we have 

A =  f l n ( p - l ) $ 4 X p ( J ) +  .?D ImdJ1{2fl+2fitfs)@:(J’)P+(J’)  (33) 

where we have used the fact that 

@+(O) = @-(O)  = f ( J ) +  = ( J ) -  = ; ( J ) .  (34) 
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0.0 
-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 

Energy 

R w  1. The werage of the logarithm (In NmJ 88 a function of energy for p = 3 with 
a Ciaueian distribution of bonds having unit variana and non-zcro mean Jo = iO.5.  

In the limits X + m,O, -CO respectively, we find 

(In ".)A,m = k In(P - 1)  

E,,, = Emi, = - q J )  
2 

(In Nm.)X,,, = & (10ln(p  - 1) t 3 i n p  t 21n 2) 

(In "Jr3-w = E W P  - 1) 

(35) 
Ex,o = Emp = E m i n  t ( 2 ~  t 111 

E,,-, = Emax = Emin t 5pI 

is simply the average energy of the positive weak bonds. These resuln are valid for 
"ly continuous symmetric distribution P( J )  and are plotted in fiewe 2 in the w e  
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of p = 3 for a Gaussian distribution of bonds with zero mean. For p = 2, (31) must 
be used and the value of (In NmS) is zero at  Emin and E,, and equal to $In2 at 
Emp. The coefficient of I in (35) is 8 for Emp and 16 for E,,,,, in this case. 

( I n N )  

-1.20 -1.15 -1.10 -1.05 -1.00 -0.95 
Energy 

E i p R  2. R e  averap oi ihc iogariihm (in AL. j 
with a Oalnrsian dhtrhtmn of bonds having unit mrianee and zcro mean. 

a iunciion oi energy ior p = 3 

For the Ising model the distribution of metastable states is symmetric about E,, 
but for p > 2 this is no longer the case.. The distniution has discontinuities at Emi, 
and E,, with that at Emin being largest. As mentioned above, these discontinuities 
are due to the presence of adjacent ne@% bonds in the chain, This behadmm 
is very similar to the discrete f h  random-field Ising model with h < 2J where J 
is the non-random bond. Masui [14,15] has studied the distribution of metastable 
states in this model and found that the distribution is both asymmetric about Emp 
and has discontinuities at the edges. The degeneracy at the edges is related to the 
many different ways in which domain walls can form whenever the random field 
changes sign from one site to the next. However, for the continuous random field 
model, Masui [14,15] finds that there are no discontinuities at the edges and that 
the distniution is much more symmetric about Emp. These results would suggest 
that the discreteness of the Potts model is important in the present study and that 
perhaps these degeneracies would disappear in quadrupolar glasses [l-31 where all 
orientations are permitted. 
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3. Pot@ model on a fractal 

In the previous section we studied the random-bond Potts model on a regular d = 1 
chain. The metastable states are due to the competition between unequal bonds. In 
systems of higherdimension, metastable states can arise even if the bonds all have 
the same value. The simplest example of such a system is a self-similar plane lattice 
with odd coordination number. Fractal lattices provide a meful tool for the study of 

models can be obtained using real space renormalization group methods [16]. Al- 
though the lattices are rather artificial, they have an effective dimensionality D > l. 

In this section we consider the p-state Potts model on the self-similar lattice 
shown in figure 3. This lattice was first introduced by Nelson and Fisher [la] to study 
the influence of dimensionality on the critical properties of the Ising model. In our 
case each vertex has a Potts variable U, which can take p values and each solid line 
connecting the three neighbouring vertices represents a bond of strength J in the 
Potts model Hamiltonian. Thus all bonds have the same strength and the disorder 
is due to the positions of the Potts variables. The fractal dimension [16] of this 
lattice is D = In 31 In 2. The equilibrium partition function can be obtained exactly 
using real space rescaling methods and the model exhibits long-range order only at 
zero temperature as in the chain. Bell and Southern 1171 have previously studied the 
dynamiiof the p = 2 Ising model on this lattice and found that there are an infinity 
of divergent relaxation times at zero temperature due to the presence of metastable 
states. All bonds are equal and positive but there are an infinite number of states 
which are stable against single spin flips at zero temperature. For any value of p ,  
these states correspond to the 0 , s  in each elementaly triangle having the same state. 
The distribution of these states with respect to energy at zero temperature can be 
obtained numerically using a recursive method based on (4) in section 2 . The trace 
over the 0, on the smallest scale is performed and only metastable states are included. 
This procedure is repeated again at the next length scale until the logarithm of the 
number of metastable states converges. The variable X in (4) is used to weight the 
contriiution of each state according to its energy. There are no weak bonds but a 
hierarchical structure of metastable states can be identified. 

V B Cherepanov et a1 

&&,ii'ei &ice ezci iejirp6 fGi ;je iiierrL&yT,a& cmctiom of siatk&i mechanicai 

F i w  3. I h s  first three stages of the >simplex lattia. 

Figure 4 shows the logarithm of the number of states (entropy) as a function of 
the energy of the states for p = 3. "he broken curve represents the equilibrium 
entropy of the Pot& model as a function of equilibrium energy and the slope of this 

k ihe iiivese ieiiipeniiire. The kiii mive reprejeii~ jG%iej h i  38 iii&iiW&k 
at zero temperature but which do not have any weight in the equilibrium properties at 
zero temperature except for those at the m i n i u m  energy. For this lattice there is no 
essential difference behveen the case with p = 2 and p > 2. The degeneracy of the 
metastable states at E,,, is due to the discreteness of the Potts model and occurs for 



Merartable states of the Pons glass 4351 

the same reason that the anti-ferromagnetic Pot& model has a ground-state entropy 
on this lattice. At finite temperatures, these states do not have infiiite relaxation 
times but they are still long and, as can be seen by comparing the two curves, these 
states account for a large fraction of the total number of equilibrium states at low 
temperatures. 

In N 

J i  , , , ,  0.0 5 

-3 -2 -1 0 
Energy 

Flpm 4 ?%e average of the logarithm of the number of metastable states at zero 
temperature BI~ a function of energy (full cuwe) and the logarithm of the number 
of quilibrium states proken NNS) as a function of the equilibrium energy for the 
p = >state Pot@ model on the 3-simplex latticc. 

4. Summary 

We have obtained exact results for the distribution of metastable states at zero tem- 
perature for the p-state Pot& model on a linear chain for arbitrary continuous distri- 
butions of the nearest-neighbour bonds. In contrast to the king spin glass, there is 
a large degeneracy due to the presence of adjacent negative bonds on the chain. In 
the case of symmetric distributions, the distribution of these states as a function of 
energy is not symmetric about the most probable energy and there are discontinuities 
at the minimum and maximum energies. We have also studied the uniform-bond 
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Pot6 model on a self-similar lattice. In this case the disorder is due to the position 
of the Pot$ variables but the resulls for p = 2 and p > 2 are essentially the same. 
The distribution of metastable states as a function of energy is not symmetric about 
the most probable energy and has a discontinuity at the upper edge. 

For both the random-bond chain and the self-similar lattice these metastable states 
have long but finite relaxation times at non-zero temperatures and they account for 
a significant fraction of the equilibrium states at low temperatures. 
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