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Abstract. In this paper we examine the distribution of metastable states in the p-state
Potts model. The random-bond Potts model on a chain as well as the vniform bond
model on a self-similar lattice are studied. Analytic results are obtained for arbitrary
continuous distributions of nearest-neighbour bonds for the chain, When negative bonds
are present, the ground state for p >> 2 is frustrated, in contrast to the Ising model which
has p = 2. The results for p > 2 show some similarity to the discrete random-field
Ising model.

1. Introduction

During the past 20 years, spin glasses have been the subject of many theoretical
and experimental studies [1-3], Much of the theoretical effort has been focused on
infinite-range models where mean-field theories predict a phase transition indepen-
dent of the dimension of the lattice. For short-ranged models, the situation is less
clear but there seems to be general agreement that the Ising spin glass exhibits a
phase transition [4,5] at finite temperature in d = 3 but not ¢ = 2. This has resulted
in other models such as the Potts glass and quadrupolar glasses {1-3, 6, 7] receiving
more attention. The dynamics of these random systems is extremely complicated due
to the presence of a large number of local energy minima into which the system can
be trapped for extremely long times, The distribution of these states as a function
of their energy has been studied at zero temperature [8-13] for the Ising modet in
both d = 1 and 4 = 2. In the present paper we study the p-state Potts model on a
one-dimensional chain. In particular we study the distribution of metastable states at
zero temperature for arbitrary distributions of the bonds between nearest neighbours.
Exact results are obtained for all p. Derrida and Gardner [12] have previously studied
the Ising model (p == 2) for the case of symmetric bond distributions. Their approach
is based upon the fact that for continuous distributions the chain has three types of
bonds: strong, medium and weak. A weak bond is a bond whose magnitude is smaller
than the magnitude of the bonds on either side of it and the number of metastable
states is given by 2* where w is the number of weak bonds. However, in the Potts
model with p > 2 the sign of the weak bond is important since the spin-inversion
symmetry of the Ising model is lost. We extend Derrida and Gardner’s results for the
distribution of metastable states to arbitrary p and to arbitrary distributions. We also
study a uniform-bond model on a self-similar lattice where the fractal geometry is
responsible for the disorder. We use a recursive method to calculate numerically the
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distribution of metastable states in energy. In both cases the distribution of metastable
states is similar to that in the random-field Ising model [14,15]. This latter model
is like the p-state Potts model in that the spin-inversion symmetry of the zero-field
Ising model is destroyed. In section 2 we describe the model and define a metastable
state. The equations for the moments of the distribution of such states are written
down and solved analytically. In section 3 we consider the uniform-bond model on
a fractal lattice. A recursive algorithm which can be used to obtain the distribution
of metastable states numerically is described and the results are discussed. Section 4
summarizes our findings.

2. Metastable states in the Potts glass

The p-state Potts model on a chain of L sites with free ends is defined by the
Hamiltonian

L
H=-3 J(pb, , ,~1) m
bt
where the end bonds J, = J;,, = 0. Each o; can take the values o, = 1,...,p

and each J; is a nearest-neighbour bond which is an independent random variabie
given by a probability distribution P(J;). The total energy can be written as

L
E=ZE£(°\'+1=°’="0£—1) @

=1

where

Ei = —%[Ji(paa.-,a.-_l - 1) + Ji+1(p60.~,a.'+1 - 1)] . (3)

If we consider site i and consider ‘spin flips’ at zero temperature in which o;
changes while all other os remain fixed, then there will be a state (or states) for
which E; is minimum for all i. A state is called metastable if such a single ‘spin flip’
at any site cannot decrease the energy. Such a state may not be stable, however, if
two adjacent spins are flipped.

The generating function for the distribution of such single spin-flip states is

L
Z(A) = Z HG(—AEl-)e‘*E' @)
{7;}i=1
where
©(-AE,) = { 1 if E; =ming,,) Ei(0i41,9:,0i.1) )
' 0 otherwise

nomd 1 2n on T nmunmma sevelilomlina thad andahts tha Ananteihoatinn A
dlil A Id d Ldgldllsc lull.lpllc[ ulidti Wclslllﬂ LIS VAJIILL IV ULIVIL W

‘to its energy. We can rewrite Z()) as

tata arnnrding
L “w\ll\-lu.lb

ZA) = Y e Bl @(-AE (op, 00 0)Yi(0r,000)  (6)

{op,00-1}
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where
L-2
Yi(ep, 00 ) = Z H e_,\E(a.+1,a..o.-.)@( AE. (a,_,_l,a,,o" ) @)
1o} i=1
1gigl-2
is a p x p matrix which can be expressed in the form
YL(U, O',) = ALéa,o" + BL(l - 50.,04) (8)

since all p-states are equivalent. For a chain with two sites (L = 2), we have the
boundary condition that A, = B, = 1, independent of J,. Hence A; and B; can
be determined from the following recursive equation:

Y lopison)

= z e~ rEBrlor4n,00,000)g (—AEL(GL+1 NI )) YL(UL , aL—l)
FL-1 -
©)
where Y; ., corresponds to the chain with the (L 4 1)th site added.
We first consider the case with A = 0 in which all metastable states are weighted
equally. Using (7)-(9) we have

(5541) = 000 ( 5 ) (10
\BLH + \ L}
where
M(JL+19J )
( O(Jppy +J) (p = 101310y — 1) ) an
G(JL)@(JL—JL.H) (P 2)@‘( JL)G)( +1)+9( JL_JL+1)

is a 2 x 2 transfer matrix which only depends on the last two bonds. This form of
M(Jyp,,,J.) is only correct for p > 2 since configurations with o, 0;,0;_, all
different have been included.

For a chain with L = 3, A; and B, are functions of both J, and J;. Averaging
these functions over the distribution P(J,) yields averaged variables (Ag(Jy)} and
(B3(Jy)). Hence averages for a chain of length L + 1 can be written in terms of the
same quantities for a chain with one less bond as follows:

)((‘iL-—l(JL 1))\ (1
AN/ AL Y v

+00
(AT = [ ay, P, 10a,,J,
(BL(JL) )~ S Bt AR

M

Assuming in the limit L — oo that these variables have the form

((:6023) =+ (30) ™
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where u is the largest eigenvalue of the integral operator (12), we obtain a system of
integral equations of the Volterra type for . These equations are

00 J
A(J) = ,u,'l{ f AP+ (p - 1)@(J)f B(J’)P(J’)d.]’}
B(J)= ,u‘l{@(J) /:o A(IYP(JVAT + ©(=J) ]DW AIVPINT  (14)

0 -—J
-|-(p—2)@(—J)/ B(J’)P(J’)dJ’+f B(J‘)P(J’)dj’}

where P(J) is the bond distribution and the subscript on J has been dropped.
It is convenient to separate functions of J into positive and negative parts as
follows:

A(J) = A (N)B(J) + A_(-DO(-J)
B(J) = B.(J)O(J) + B_(-1)6(=J) (15)
P(J) = P (N)O(J) + P_(=J)O(-J).

For the case of a symmetric bond distribution P(J) = P(—J) we can introduce a
new variable

€= fo ? Py’ (16)

and (14) become independent of the detailed form of P(J):

1/2

£
A+(€)=u‘1{ [ A tnan+ [ A-enan

¢ 1/2
+(;a-1)f0 B.(mdn+(p-1) [ B-(n)dn}
1/2 1/2
B+(E)=u“{ [ A+ | B_(n)dn} a7

1/2
A_(&)=p"t A A, (mdny

1/2

4 1/2
@ =u{ [ Axman+ [ Bumant -1 [ B_(an].

A similar set of linear integral equations can be obtained for an arbitrary (non-
symmetric) rectangular distribution.
The general solution of this set of equations has the form

A, =ae®® B =bel® A _=celet  B_=det, (18)
The parameter cu is a solution of the quartic equation

(ap) =~ (p+ 1)(ap)l+1=0 (19)
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and the four roots are labelled as oy = +y, 4z where

y={ip+ 1)+ V- D+’
z={i(p+1)- V- D+,

In order to have a non-trivial solution of (17), the determinant of the coefficients
of (a, b, ¢, d) must vanish. This condition is

Ve -Dp+3)+(2- ) 2+ (p - 2)] tan(-;/Zu)

—(2—z2)[y2+(p-2)]5?3(‘;/—2“)=o. 1)

(20)

The solution of this equation for u gives the first moment (N, ) of the distribution of
metastable states. Derrida and Gardner [12] obtained the result x = 4/ for p = 2.
For p > 2, the first moment increases with p and in the limit p -+ co approaches the
value p = p/2.

In addition to the first moment of the distribution of metastable states, we can
repeat the calculation described above for arbitrary moments and X non-zero. A
recursive equation for the nth powers of A% ; and B}, involve the cross products
AP BT withm =1,...,n~1, However these cross products can be written in
the form

AT BLIT =exp (AmpJy) (Ol + (2~ 1) Diyy] - (22

The variables C7 ., and D}, do not depend on m and a set of equations of the
following form are obtained:

n n
g s
L+1 L
n n
DL+1 DL
Tha 4 w 4 matrix ‘?I/‘f (7. J.\ onlv involves the hande J. and J. and henca
AL - l'\ - n \VL+1 1] UL , WA ‘-l: RELTAFAY WS BALN RILFILAWIG "L 1 i W L REALRS AA%WrAANAS

averages of these moments for a chain of length L + 1 can be expressed in terms
of the same quantities for a chain of length L. Introducing averaged variables
and separating them into terms for positive and negative bonds, we obtain a set of
eight coupled integral equations. There are four simple relations between the eight
functions and the set again reduces to four integral equations of the Volterra type.

We first consider the case of A = 0 and a symmetric bond distribution P(J) =
P(—J). The general solution of these equations is similar to that in (18) and au
satisfies the quartic equation

(ap)t - [3p" - 2(p - 1)" = 1] (ap)* + [2p" - (p-1)" - 1] [p" - (p - 1)"]
-(p-D"(2"-1)*=0. (24)
This equation reduces io (i9) for ihe first moment when » = 1. The iniegrai
equations have a non-trivial solution when the following condition is satisfied:
F2(va —v) — Ftan(2/2u)[L ~ v )(1+ (p—1)" 7))
+ ztan(y/2p)[1 - )1 +(p—~1)"y,] =0 (25)
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with

P+(p-1)"~2p" +1
(p-1)"(27 -1)

24+ (p-1)"—2p" +1
(p-1)»(2"-1)

where 7 and z are the absolute values of the roots of the quartic equation in (24)
and reduce to y and z when n = 1. If the roots corresponding to § or z are complex
then in (25) the corresponding tan function is replaced by tanh. In the limit of
large p and fixed n, we have p = p™ /2 whereas in the limit of large » and fixed p,
p=(p-~1"/2.

The average of the logarithm of the number of metastable states can be obtained
by examining the limit » — 0 of the nth moment. We give below analytic results
for A =lim,_,8u/0n in the case where the distribution is weighted according to
energy using A as in (4) and for an arbitrary distribution of bonds. The average of
the logarithm of the number of metastable states is related to A by

=
(26)

Y2 =

oN_)=A+) E E=-9A (27)
N aA

where F is the average energy of the states. With P, (J) and P_(J) defined as in
(15) we also define

(Di(J)=/°O Py (J")dJ’
” (28)
(J)i=f0 J'P(J)J .

The solution of the equation which is the generalization of (25) in the limit n — 0
gives

A=®_(0)In(p—1)+ A [(p— (I}, +{I)_]
+ fom dJ{f(JN2, (JYP_(J)2,(J)

+ [(IV®_(I)VP(INE_(J') +2fo(J)2 (J)PL(J)R_(J)

+ f3(J)®, (J)PL(J)2,(J)} (29)
where
e
A =1n (14 S ]
A =m[1+ 7] (30)
L) = [14(p-1e] .
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Each of the terms inside the integrand in (29) corresponds to a weak bond configu-
ration but configurations with two adjacent negative bonds do not contribute. This is
in contrast to the Ising model (p = 2) where the sign of the weak bonds is irrelevant.
In the case p = 2 all three functions f;(i = 1,2,3) are the same and the additional
weak bond configurations must also be included. Hence for the Ising model we have

A=A[(0), + (J)_] + ]ude' {in [14 27} @, () P_(3)2,(I)

+@_(JYP (JYe_(J)+ 20 (J)P, (J)®_{J)
+ @, (J)VP (TN (J) + 28 _(J)P_(J)2,(J")

+@_(J)P_(JN0_(J)}). (31)

Thus (29) and (31) can be used to study non-symmetric distributions of the bonds.
As A — oo, only the lowest energy states are included and we have

A=0_(0)In(p-1)

(32)
E= Emin = —(P - 1)(J)+ - (J)-

and thus the ground state is highly degenerate for p > 2 if negative bonds are
present. The maximum energy E .. and the most probable energy E__ are also
easily obtained by taking the limits A — —co and X — 0 respectively, The results for
arbitrary non-symmetric distributions are easily obtained from (27)—(31). For example,
if all bonds are negative then the distribution collapses to {In N} = In(p-1), £ =
~{J)_. If all bonds are positive, then the result is essentially the same as for the
case p = 2. Figure 1 shows {In N} as a function of E for a Gaussian distribution
of bonds with non-zero mean J, = +0.5 and unit variance in the case p = 3. The
distribution has discontinuities at E,_;, and E__, in both cases. These discontinuities
are due to the presence of adjacent negative bonds in the chain. As the number of
positive bonds increases (J, = +0.5) these discontinuities decrease with the one at
E ;. decreasing more rapidly. When all bonds are positive both discontinuities are
zero and the cutve is symmetric about E,,, where it has the value 3 In p . However as
the number of negative bonds increases (J, = —0.5) the discontinuities increase and
the distribution shrinks in width until finally when all bonds are negative it collapses
to the value In(p — 1).
The expressions simplify in the case of a symmetric distribution and we have

A==+ Pa)+ [ 4025+ 20+ ORI (33)

where we have used the fact that

e, 0)=0_(0)=3 (Jhy=(I_=4). (34)
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i InN»
0.8 J=-0.5
J =205
1]
0.4]
0.2]
0.0

-20 -1.8 -6 -14 -12 -10 -0.8
Energy

Figure 1. The average of the logarithm {In Npm,) a3 a function of energy for p = 3 with
a Gaussian distribution of bonds having unit variance and non-zero mean Jp = +0.5.

In the limits A — 00,0, —00 respectively, we find
(ln Nma)A-»oo = %ln(p - 1)

' P
EA—-oo = Emin = _E(J)

(ln Nms),\-oo = 21_4(10111(?_ 1) + 3111P+21ﬂ 2)

(35
EA—D = Emp = Emin + (2P + 1)I
(In N oo = %ln('p -1)
EA—»-oo = Emax = Emin + 5])[
where
00
I= /0 JOL(J)P,(J)dJ (36)

is simply the average energy of the positive weak bonds. These results are valid for
any continuous symmetric distribution P(J) and are plotted in figure 2 in the case
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of p = 3 for a Gaussian distribution of bonds with zero mean. For p = 2, (31) must
be used and the value of {In N,,,) is zero at E_;, and E,,, and equal to 11n2 at
E, - The coefficient of I in (35) is 8 for E,,, and 16 for E_,, in this case.

{InN)»
0.6

)
N

0.2

0-0-\ T T T T
-1.20 -115 -110 -1.05 -1.00 -0.95
Energy

Figure I, The average of ihe iogariihm {in Nm,} as a funciion of energy for p = 3
with a Gaussian distribution of bonds having unit variance and zero mean.

For the Ising model the distribution of metastable states is symmetric about E,,,,
but for p > 2 this is no longer the case. The distribution has discontinuities at E_;
and E_,, with that at E_, being largest. As mentioned above, these discontinuities
are due to the presence of adjacent negative bonds in the chain. This behaviour
is very similar to the discrete £h random-field Ising model with A < 2J where J
is the non-random bond. Masui [14,15] has studied the distribution of metastable
states in this model and found that the distribution is both asymmetric about E_,
and has discontinuities at the edges. The degeneracy at the edges is related to the
many different ways in which domain walls can form whenever the random field
changes sign from one site to the next. However, for the continuous random field
model, Masui {14, 15] finds that there are no discontinuities at the edges and that
the distribution is much more symmetric about E_,,. These results would suggest
that the discreteness of the Potts model is important in the present study and that
perhaps these degeneracies would disappear in quadrupolar glasses [1-3] where ali

orientations are permitted.
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3. Potts model on a fractal

In the previous section we studied the random-bond Potis model on a regular d = 1
chain. The metastable states are due to the competition between unequal bonds. In
systems of higher-dimension, metastable states can arise even if the bonds all have
the same value. The simplest example of such a system is a self-similar plane lattice
with odd coordination number. Fractal lattices provide a useful tool for the study of
disorder since exact results for the thermodynamic functions of siatistical mechanicai
models can be obtained using real space renormalization group methods [16]. Al-
though the lattices are rather artificial, they have an effective dimensionality D > 1.

In this section we consider the p-state Potts model on the self-similar lattice
shown in figure 3. This lattice was first introduced by Nelson and Fisher [16] to study
the influence of dimensionality on the critical properties of the Ising model. In our
case each vertex has a Potts variable o; which can take p values and each solid line
connecting the three neighbouring vertices represents a bond of strength J in the
Potts model Hamiltonian. Thus all bonds have the same strength and the disorder
is due to the positions of the Potts variables. The fractal dimension [16] of this
lattice is D = In3/1in2. The equilibrium partition function can be obtained exactly
using real space rescaling methods and the model exhibits long-range order only at
zero temperature as in the chain. Bell and Southern {17] have previously studied the
dynamics of the p = 2 Ising model on this lattice and found that there are an infinity
of divergent relaxation times at zero temperature due to the presence of metastable
states. All bonds are equal and positive but there are an infinite number of states
which are stable against single spin flips at zero temperature, For any value of p,
these states correspond to the o;s in each elementary triangle having the same state.
The distribution of these states with respect to energy at zero temperature can be
obtained numerically using a recursive method based on (4) in section 2 . The trace
over the o; on the smallest scale is performed and only metastable states are included.
This procedure is repeated again at the next length scale until the logarithm of the
number of metastable states converges. The variable X in (4) is used to weight the
contribution of each state according to its energy. There are no weak bonds but a
hierarchical structure of metastable states can be identified.

Figure 3. The first three stages of the 3-simplex lattice.

Figure 4 shows the logarithm of the number of states (entropy) as a function of
the energy of the states for p = 3. The broken curve represents the equilibrium
entropy of the Potts model as a function of equilibrium energy and the slope of this
curve s the inverse temperature. The full curve represents states that are metastable
at zero temperature but which do not have any weight in the equilibrium properties at
zero temperature except for those at the minimum energy. For this lattice there is no
essential difference between the case with p = 2 and p > 2. The degeneracy of the

metastable states at E__. is due to the discreteness of the Potts model and occurs for

max
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the same reason that the anti-ferromagnetic Potts model has a ground-state entropy
on this lattice. At finite temperatures, these states do not have infinite relaxation
times but they are still long and, as can be seen by comparing the two curves, these
states account for a large fraction of the total number of equilibrium states at low
temperatures.

inN
121

0.81

Energy

Figure 4. The average of the logarithm of the number of metastable states at zero
temperature as a function of energy (full curve) and the logarithm of the number
of equilibrium states (broken curve) as a function of the equilibrivm encrgy for the
p = 3-state Potts model on the 3-simplex lattice.

4. Summary

We have obtained exact results for the distribution of metastable states at zero tem-
perature for the p-state Potts model on a linear chain for arbitrary continuous distri-
butions of the nearest-neighbour bonds. In contrast to the Ising spin glass, there is
a large degeneracy due to the presence of adjacent negative bonds on the chain. In
the case of symmetric distributions, the distribution of these states as a function of
energy is not symmetric about the most probable energy and there are discontinuities
at the minimum and maximum energies. We have also studied the uniform-bond
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Potts model on a self-similar lattice. In this case the disorder is due to the position
of the Potts variables but the results for p = 2 and p > 2 are essentially the same.
The distribution of metastable states as a function of energy is not symmetric about
the most probable energy and has a discontinuity at the upper edge.

For both the random-bond chain and the self-similar lattice these metastable states
have long but finite relaxation times at non-zero temperatures and they account for
a significant fraction of the equilibrium states at low temperatures,

Acknowledgment

This work was supported by the Natural Sciences and Engineering Research Council
of Canada.

References

[1) Binder K and Young A P 1986 Rev. Mod. Phys. 58 801-76
[21 Chowdhury D 1986 Spin Glasses and Other Frustrated Systems (Singapore: World Scientific)
[3] Fischer K H and Hertz J A 1991 Spin Glasses (Cambridge: Cambridge University Press}
[4] Bray A J and Moore M A 1987 Heidelberg Colloguium on Glassy Dynamics (Lecture Notes in Physics
275) ed J L van Hemmen and 1 Morgenstern {Berlin: Springer) p 121-53
[5] Bhatt R N and Young A P 1987 Heidelberg Colloquium on Glassy Dynamics (Lecture Notes in Physics
275) ed J L van Hemmen and 1 Morgenstern (Berlin: Springer) p 215-36
[6] Scheucher M, Reger J D, Binder K and Young A P 1990 Phys. Rev. 42 68814
[7] Scheucher M, Reger J D, Binder K and Young A P 1991 Ewrophys. Lett. 14 119-23
[8] Fernandez J F and Medina R 1979 Phys. Rev. B 19 3561-70
[9] Li T 1981 Phys. Rev. B 24 6579-87
[10] Chen H H and Ma S K 1982 J Stat. Phys. 29 717
[11] Ettelaie R and Moore M A 1985 J. Physique Lett. 46 1893-500
[12] Derrida B and Gardner E 1986 J. Physique 47 959-65
[13] Masui S, Southern B W and Jacobs A E 1989 Phys. Rev. 39 6925-33
[14] Masui $ 1990 Metastable states of ising spin glasses and other random systems PAD Thesis University
of Toronto pp 72-92
[15] Masui S, Jacobs A E, Wicentowich C and Southern B W 1992 Metastable states of the random
field Ising chain J. Phys. A: Math. Gen. submitted
[16] Nelson D R and Fisher M E 1975 Ann. Phys, 91 226-74
[t7] Bell S and Southern B W 1988 Phys. Rev. B 38 333-7



